GENERAL DESCRIPTION
The AD633 is a functionally complete, four-quadrant, analog
multiplier. It includes high impedance, differential X and Y inputs,
and a high impedance summing input (Z). The low impedance
output voltage is a nominal 10 V full scale provided by a buried
Zener. The AD633 is the first product to offer these features in
modestly priced 8-lead PDIP and SOIC packages.
The AD633 is laser calibrated to a guaranteed total accuracy of
2% of full scale. Nonlinearity for the Y input is typically less
than 0.1% and noise referred to the output is typically less than
100 μV rms in a 10 Hz to 10 kHz bandwidth. A 1 MHz bandwidth,
20 V/μs slew rate, and the ability to drive capacitive loads make
the AD633 useful in a wide variety of applications where
simplicity and cost are key concerns.
The versatility of the AD633 is not compromised by its simplicity.
The Z input provides access to the output buffer amplifier, enabling
the user to sum the outputs of two or more multipliers, increase
the multiplier gain, convert the output voltage to a current, and
configure a variety of applications.
The AD633 is available in 8-lead PDIP and SOIC packages. It is
specified to operate over the 0°C to 70°C commercial temperature
range (J Grade) or the −40°C to +85°C industrial temperature
range (A Grade).
PRODUCT HIGHLIGHTS
1. The AD633 is a complete four-quadrant multiplier offered
in low cost 8-lead SOIC and PDIP packages. The result is a
product that is cost effective and easy to apply.
2. No external components or expensive user calibration are
required to apply the AD633.
3. Monolithic construction and laser calibration make the
device stable and reliable.
4. High (10 MΩ) input resistances make signal source
loading negligible.
5. Power supply voltages can range from ±8 V to ±18 V. The
internal scaling voltage is generated by a stable Zener diode;
multiplier accuracy is essentially supply insensitive.
FEATURES
4-quadrant multiplication
Low cost, 8-lead SOIC and PDIP packages
Complete—no external components required
Laser-trimmed accuracy and stability
Total error within 2% of full scale
Differential high impedance X and Y inputs
High impedance unity-gain summing input
Laser-trimmed 10 V scaling reference
APPLICATIONS
Multiplication, division, squaring
Modulation/demodulation, phase detection
Voltage-controlled amplifiers/attenuators/filters