Good start-up torque in the sensorless mode (and obviously in the sensored mode as well).
The motor is used as a tachometer, which is good for odometry on modified RC cars.
Duty-cycle control, speed control or current control.
Seamless 4-quadrant operation.
Interface to control the motor: PPM signal (RC servo), analog, UART, I2C, USB or CAN-bus.
Wireless wii nunchuk (Nyko Kama) control through the I2C port. This is convenient for electric skateboards.
Consumed and regenerated amp-hour and watt-hour counting.
Optional PPM signal output. Useful when e.g. controlling an RC car from a raspberry pi or an android device.
The USB port uses the modem profile, so an Android device can be connected to the motor controller without rooting. Because of the servo output, the odometry and the extra ADC inputs (that can be used for sensors), this is perfect for modifying an RC car to be controlled from Android (or raspberry pi).
Adjustable protection against
Low input voltage
High input voltage
High motor current
High input current
High regenerative braking current (separate limits for the motor and the input)
Rapid duty cycle changes (ramping)
High RPM (separate limits for each direction).
When the current limits are hit, a soft back-off strategy is used while the motor keeps running. If the current becomes way too high, the motor is switched off completely.
The RPM limit also has a soft back-off strategy.
Commutation works perfectly even when the speed of the motor changes rapidly. This is due to the fact that the magnetic flux is integrated after the zero crossing instead of adding a delay based on the previous speed.
When the motor is rotating while the controller is off, the commutations and the direction are tracked. The duty-cycle to get the same speed is also calculated. This is to get a smooth start when the motor is already spinning.
All of the hardware is ready for sensorless field-oriented control (FOC). Sensored and sensorless FOC is fully implemented since FW 2.3.