My Gym Collagen tablet
USD $18.5 - $19 /Box
Min.Order:10 Boxes
Wuhan Web Science & Technology Development Co., Ltd.
Collagen is the main structural protein of the various connective tissues in animals. (The name collagen comes from the Greek kolla meaning glue and suffix -gen denoting producing.) As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen, in the form of elongated fibrils, is mostly found in fibrous tissues such as tendons, ligaments and skin, and is also abundant in corneas, cartilage, bones, blood vessels, the gut, and intervertebral discs. The fibroblast is the most common cell that creates collagen.
In muscle tissue, it serves as a major component of the endomysium. Collagen constitutes one to two percent of muscle tissue, and accounts for 6% of the weight of strong, tendinous muscles. Gelatin, which is used in food and industry, is collagen that has been irreversibly hydrolyzed.
Collagen is one of the long, fibrous structural proteins whose functions are quite different from those of globular proteins, such as enzymes. Tough bundles of collagen called collagen fibers are a major component of the extracellular matrix that supports most tissues and gives cells structure from the outside, but collagen is also found inside certain cells. Collagen has great tensile strength, and is the main component of fascia, cartilage, ligaments, tendons, bone and skin. Along with soft keratin, it is responsible for skin strength and elasticity, and its degradation leads to wrinkles that accompany aging. It strengthens blood vessels and plays a role in tissue development. It is present in the cornea and lens of the eye in crystalline form.
Cardiac applications
The four collagenous valve rings, the central body of the heart and the extended cardiac skeleton of the heart are histologically and uniquely bound to cardiac muscle. Collagen is the floor of the atria adjoining the ceiling of the ventricles. Collagen contribution to cardiac performance summarily represents an essential, unique and moving solid form of mass opposed to the fluid mechanics of blood mass movement within the heart. The collagenous structure that divides the upper chambers of the heart from the lower chambers is an impermeable firewall that excludes both blood and electrical influence through customary anatomical channels. Thanks to collagen, atrial fibrillation almost never deteriorates to ventricular fibrillation. Collagen is infiltrated in varying densities with cardiac muscle mass. The amount (mass), distribution, age and density of collagen all contribute to the compliance required to move blood back and forth. Individual cardiac valvular leaflets are forged into shape by specialized collagen under variable pressure. Gradual calcium deposition within collagen occurs as a natural consequence of aging. Calcium rich fixed points within collagen in a moving display of blood and muscle enables methods of cardiac imaging technology to arrive at ratios essentially stating blood in (cardiac input) and blood out (cardiac output). Pathology of the collagen underpinning of the heart is closely related to the category connective tissue disease.
Type II collagen and rheumatoid arthritis
According to a study published in the journal Science, oral administration of type II collagen improves symptoms of rheumatoid arthritis. The authors conducted a randomized, double-blind trial involving 60 patients with severe, active rheumatoid arthritis. A decrease in the number of swollen joints and tender joints occurred in subjects fed with chicken type II collagen for 3 months, but not in those that received a placebo. Four patients in the collagen group had complete remission of the disease. No side effects were evident.
Hydrolyzed type II collagen and osteoarthritis
A published study reports that ingestion of a novel low molecular weight hydrolyzed chicken sternal cartilage extract, containing a matrix of hydrolyzed type II collagen, chondroitin sulfate, and hyaluronic acid, marketed under the brand name BioCell Collagen, relieves joint discomfort associated with osteoarthritis. A randomized controlled trial (RCT) enrolling 80 subjects demonstrated that BioCell Collagen was well tolerated with no serious adverse event and led to a significant improvement in joint mobility compared to the placebo group on days 35 (p = 0.007) and 70 (p < 0.001).
Cosmetic surgery
Collagen has been widely used in cosmetic surgery, as a healing aid for burn patients for reconstruction of bone and a wide variety of dental, orthopedic and surgical purposes. Both human and bovine collagen is widely used as dermal fillers for treatment of wrinkles and skin aging. Some points of interest are:
1. when used cosmetically, there is a chance of allergic reactions causing prolonged redness; however, this can be virtually eliminated by simple and inconspicuous patch testing prior to cosmetic use, and
2. most medical collagen is derived from young beef cattle (bovine) from certified BSE-free animals. Most manufacturers use donor animals from either "closed herds", or from countries which have never had a reported case of BSE such as Australia, Brazil and New Zealand.
3. porcine (pig) tissue is also widely used for producing collagen sheet for a variety of surgical purposes.
4. alternatives using the patient´s own fat, hyaluronic acid or polyacrylamide gels which are readily available.
Bone grafts
As the skeleton forms the structure of the body, it is vital that it maintains its strength, even after breaks and injuries. Collagen is used in bone grafting as it has a triple helical structure, making it a very strong molecule. It is ideal for use in bones, as it does not compromise the structural integrity of the skeleton. The triple helical structure of collagen prevents it from being broken down by enzymes, it enables adhesiveness of cells and it is important for the proper assembly of the extracellular matrix.
Tissue regeneration
Collagen scaffolds are used in tissue regeneration, either in sponges, thin sheets or gels. Collagen has the correct properties for tissue regeneration such as pore structure, permeability, hydrophilicity and it is stable in vivo. Collagen scaffolds are also ideal for the deposition of cells, such as osteoblasts and fibroblasts and once inserted, growth is able to continue as normal in the tissue.
Reconstructive surgical uses
Collagens are widely employed in the construction of the artificial skin substitutes used in the management of severe burns. These collagens may be derived from bovine, equine, porcine, or even human sources; and are sometimes used in combination with silicones, glycosaminoglycans, fibroblasts, growth factors and other substances.
Collagen is also sold commercially in pill form as a supplement to aid joint mobility. However, because proteins are broken down into amino acids before absorption, there is no reason for orally ingested collagen to affect connective tissue in the body, except through the effect of individual amino acid supplementation.
Collagen is also frequently used in scientific research applications for cell culture, studying cell behavior and cellular interactions with the extracellular environment.
Wound care management uses
Collagen is one of the body’s key natural resources and a component of skin tissue that can benefit all stages of the wound healing process. When collagen is made available to the wound bed, closure can occur. Wound deterioration, followed sometimes by procedures such as amputation, can thus be avoided.
Collagen is a natural product, therefore it is used as a natural wound dressing and has properties that artificial wound dressings do not have. It is resistant against bacteria, which is of vital importance in a wound dressing. It helps to keep the wound sterile, because of its natural ability to fight infection. When collagen is used as a burn dressing, healthy granulation tissue is able to form very quickly over the burn, helping it to heal rapidly.
Throughout the 4 phases of wound healing, collagen performs the following functions in wound healing:
· Guiding function: Collagen fibers serve to guide fibroblasts. Fibroblasts migrate along a connective tissue matrix.
· Chemotactic properties: The large surface area available on collagen fibers can attract fibrogenic cells which help in healing.
· Nucleation: Collagen, in the presence of certain neutral salt molecules can act as a nucleating agent causing formation of fibrillar structures. A collagen wound dressing might serve as a guide for orienting new collagen deposition and capillary growth.