Woodfree Offset Paper Offset Paper Factory Offset Woodfree Paper
USD $640 - $665 /Metric Ton
Min.Order:100 Metric Tons
Hangzhou Fuyang Juli Paper Co., Limited
Wholesale 80GSM Offset Paper Writing Paper Offset Writing Paper
Product name: offset paper 80g white
Weight: 45---80gsm
Brightness: 88%-102%
Material: wood pulp
Color: White
Paper machine: 1720mm, 1760mm, 1880mm, 2640mm
Packing: In sheet, 500 sheets/ream; In roll, inside is plastic film and outside is art coated paper, or other required packing way
We will offer you the most reasonalbe and favorable price against your detailed inquiry.
80g White Offset Printing Paper
Brief introduction
Strong and durable white printing paper which is found everywhere from letterheads to writing paper, business forms, exercise book paper, etc. We supply from 50gsm to 180gsm.
1. Description | Woodfree offset printing paper |
2. Material | 100%wood pulp |
3. Size | In rolls or sheets all size |
4. Machine deckle | 6000mm+ |
5. Substance | 50-180gsm |
6. Printing suitable | offset printing, silk screen printing |
7. Roll packing | Core:76mm,without pallet or with pallet support the roll if needed |
8. Sheet packing | 500sheets/ream or 250sheets/ream and on pallet with plastic wrapped outside |
9. Packing material | Strong PE coated kraft paper, stretch film, plastic fasten belt, strong pallet |
10. For your choice | Size and packing can be done as per the client requirement |
11. Brand | our brand(trueprint, docucopy and JULI PAPER) or OEM brand are both available. Neutral packing also available |
12. Delivery | according to order quantity,30days more or less |
13. Delivery term | FOB,CNF or CIF |
14. Payment | L/C or TT or other |
Juli Paper Woodfree Offset Printing Paper Advantages
(1) Top quality, international standard, ISO AND FSC certificate;
(2) Rich experience in paper international business;
(3) OEM acceptable;flexible paper machine deckle, all size could be produced;
(4) Our TOP international VIP service;
(5) Fast and accurate quotation;
(6) 2 years gold supplier on alibaba.
1.Q:What's the professional product of your company?
A: Our professional paper are grey board ,duplex board,and white board paper .we also
export specially paper .
2.Q:How could i get the sample ?
A: If you need sample to check about the quality ,we can offer you the sample for free ,
but we'd like to ask you to pay for the courier freight .If you have a courier
account ,we can send the sample to you directly,if not ,you can ask your courier to collect
the sample from our company or send us the charge then we will send it to you .
3.Q:How much the courier freight will be for the samples?
A: It depends on the quantity ,the size ,weight and your area.
4.Q:How can i get your quotation about your products?
A: Please send us a email for our price list or your order information to our email ,
5. Q:How to place an order to you ?
A: You can send us your order information to our email address. or we can send a Proforma
Invoice to you .for your order ,we need to know the following information:
a) Shipping information:company name , address ,tel ,fax,destination airport or sea port.
transportation method (by courier ,by sea ,by air or others)
b) Production information : commodity name, size ,quantity.unit price .
c) Terms of delivery : FOB / CIF / CFR
d) Delivery time required
f ) Type of payment : TT / LC at sight
g) Forwarder's contact information if term of delivery is FOB.
6. Q: What is the usual payment term of your orders?
A: We accept TT , LC at sight or Western Union
7.Q: How many tons can load on a 20GP or 40GP container?
A: This depends on the size and grammage or thickness you need ,
pls send the information of your requirements to our email , then we
will calculate the weight for you .
If you have any questions, please feel free to contact us in any time !
Contact Name:Jason
Skype ID:babyfacetao
Tell:+86-571-63101803
Fax:+86-571-63500398
Cell:+86-13989465910
Pro. Manufacturer of Paperboard
Making:
Chemical pulping
To make pulp from wood, a chemical pulping process separates lignin from cellulose fibres. This is accomplished by dissolving lignin in a cooking liquor, so that it may be washed from the cellulose; this preserves the length of the cellulose fibres. Paper made from chemical pulps are also known as wood-free papers–not to be confused with tree-free paper; this is because they do not contain lignin, which deteriorates over time. The pulp can also be bleached to produce white paper, but this consumes 5% of the fibres; chemical pulping processes are not used to make paper made from cotton, which is already 90% cellulose.
There are three main chemical pulping processes: the sulfite process dates back to the 1840s and it was the dominant method extent before the second world war. The kraft process, invented in the 1870s and first used in the 1890s, is now the most commonly practiced strategy, one of its advantages is the chemical reaction with lignin, that produces heat, which can be used to run a generator. Most pulping operations using the kraft process are net contributors to the electricity grid or use the electricity to run an adjacent paper mill. Another advantage is that this process recovers and reuses all inorganic chemical reagents. Soda pulping is another specialty process used to pulp straws, bagasse and hardwoods with high silicate content.
Mechanical pulping
There are two major mechanical pulps, the thermomechanical one (TMP) and groundwood pulp (GW). In the TMP process, wood is chipped and then fed into large steam heated refiners, where the chips are squeezed and converted to fibres between two steel discs. In the groundwood process, debarked logs are fed into grinders where they are pressed against rotating stones to be made into fibres. Mechanical pulping does not remove the lignin, so the yield is very high, >95%, however it causes the paper thus produced to turn yellow and become brittle over time. Mechanical pulps have rather short fibres, thus producing weak paper. Although large amounts of electrical energy are required to produce mechanical pulp, it costs less than the chemical kind.
De-inked pulp
Paper recycling processes can use either chemically or mechanically produced pulp; by mixing it with water and applying mechanical action the hydrogen bonds in the paper can be broken and fibres separated again. Most recycled paper contains a proportion of virgin fibre for the sake of quality; generally speaking, de-inked pulp is of the same quality or lower than the collected paper it was made from.
There are three main classifications of recycled fibre:.
Recycled papers can be made from 100% recycled materials or blended with virgin pulp, although they are (generally) not as strong nor as bright as papers made from the latter.
Additives
Besides the fibres, pulps may contain fillers such as chalk or china clay, which improve its characteristics for printing or writing. Additives for sizing purposes may be mixed with it and/or applied to the paper web later in the manufacturing process; the purpose of such sizing is to establish the correct level of surface absorbency to suit ink or paint.
Producing paper
The pulp is fed to a paper machine where it is formed as a paper web and the water is removed from it by pressing and drying.
Pressing the sheet removes the water by force; once the water is forced from the sheet, a special kind of felt, which is not to be confused with the traditional one, is used to collect the water; whereas when making paper by hand, a blotter sheet is used instead.
Drying involves using air and/or heat to remove water from the paper sheets; in the earliest days of paper making this was done by hanging the sheets like laundry; in more modern times various forms of heated drying mechanisms are used. On the paper machine the most common is the steam heated can dryer. These can reach temperatures above 200 °F (93 °C) and are used in long sequences of more than 40 cans; where the heat produced by these can easily dry the paper to less than 6% moisture.
Finishing
The paper may then undergo sizing to alter its physical properties for use in various applications.
Paper at this point is uncoated. Coated paper has a thin layer of material such as calcium carbonate or china clay applied to one or both sides in order to create a surface more suitable for high-resolution halftone screens. (Uncoated papers are rarely suitable for screens above 150 lpi.) Coated or uncoated papers may have their surfaces polished by calendering. Coated papers are divided into matte, semi-matte or silk, and gloss. Gloss papers give the highest optical density in the printed image.
The paper is then fed onto reels if it is to be used on web printing presses, or cut into sheets for other printing processes or other purposes. The fibres in the paper basically run in the machine direction. Sheets are usually cut "long-grain", i.e. with the grain parallel to the longer dimension of the sheet.
All paper produced by paper machines as the Fourdrinier Machine are wove paper, i.e. the wire mesh that transports the web leaves a pattern that has the same density along the paper grain and across the grain. Textured finishes, watermarks and wire patterns imitating hand-made laid paper can be created by the use of appropriate rollers in the later stages of the machine.
Wove paper does not exhibit "laidlines", which are small regular lines left behind on paper when it was handmade in a mould made from rows of metal wires or bamboo. Laidlines are very close together. They run perpendicular to the "chainlines", which are further apart. Handmade paper similarly exhibits "deckle edges", or rough and feathery borders.
Applications
Paper can be produced with a wide variety of properties, depending on its intended use.
Types, thickness and weight
The thickness of paper is often measured by caliper, which is typically given in thousandths of an inch in the United States and in thousandths of a mm in the rest of the world. Paper may be between 0.07 and 0.18 millimetres (0.0028 and 0.0071 in) thick.
Paper is often characterized by weight. In the United States, the weight assigned to a paper is the weight of a ream, 500 sheets, of varying "basic sizes", before the paper is cut into the size it is sold to end customers. For example, a ream of 20 lb, 8.5 in × 11 in (216 mm × 279 mm) paper weighs 5 pounds, because it has been cut from a larger sheet into four pieces. In the United States, printing paper is generally 20 lb, 24 lb, or 32 lb at most. Cover stock is generally 68 lb, and 110 lb or more is considered card stock.
In Europe, and other regions using the ISO 216 paper sizing system, the weight is expressed in grammes per square metre (g/m2 or usually just g) of the paper. Printing paper is generally between 60 g and 120 g. Anything heavier than 160 g is considered card. The weight of a ream therefore depends on the dimensions of the paper and its thickness.
Most commercial paper sold in North America is cut to standard paper sizes based on customary units and is defined by the length and width of a sheet of paper.
The ISO 216 system used in most other countries is based on the surface area of a sheet of paper, not on a sheet's width and length. It was first adopted in Germany in 1922 and generally spread as nations adopted the metric system. The largest standard size paper is A0 (A zero), measuring one square meter (approx. 1189 × 841 mm). Two sheets of A1, placed upright side by side fit exactly into one sheet of A0 laid on its side. Similarly, two sheets of A2 fit into one sheet of A1 and so forth. Common sizes used in the office and the home are A4 and A3 (A3 is the size of two A4 sheets).
The density of paper ranges from 250 kg/m3 (16 lb/cu ft) for tissue paper to 1,500 kg/m3 (94 lb/cu ft) for some speciality paper. Printing paper is about 800 kg/m3 (50 lb/cu ft).
Paper may be classified into seven categories:
Some paper types include:
|
|
|
Paper stability
Much of the early paper made from wood pulp contained significant amounts of alum, a variety of aluminium sulfate salts that is significantly acidic. Alum was added to paper to assist in sizing, making it somewhat water resistant so that inks did not "run" or spread uncontrollably. Early papermakers did not realize that the alum they added liberally to cure almost every problem encountered in making their product would eventually be detrimental.The cellulose fibres that make up paper are hydrolyzed by acid, and the presence of alum would eventually degrade the fibres until the paper disintegrated in a process that has come to be known as "slow fire". Documents written on rag paper were significantly more stable. The use of non-acidic additives to make paper is becoming more prevalent, and the stability of these papers is less of an issue.
Paper made from mechanical pulp contains significant amounts of lignin, a major component in wood. In the presence of light and oxygen, lignin reacts to give yellow materials, which is why newsprint and other mechanical paper yellows with age. Paper made from bleached kraft or sulfite pulps does not contain significant amounts of lignin and is therefore better suited for books, documents and other applications where whiteness of the paper is essential.
Paper made from wood pulp is not necessarily less durable than a rag paper. The ageing behavior of a paper is determined by its manufacture, not the original source of the fibres.Furthermore, tests sponsored by the Library of Congress prove that all paper is at risk of acid decay, because cellulose itself produces formic, acetic, lactic and oxalic acids.
Mechanical pulping yields almost a tonne of pulp per tonne of dry wood used, which is why mechanical pulps are sometimes referred to as "high yield" pulps. With almost twice the yield as chemical pulping, mechanical pulps is often cheaper. Mass-market paperback books and newspapers tend to use mechanical papers. Book publishers tend to use acid-free paper, made from fully bleached chemical pulps for hardback and trade paperback books.
Environmental impact of paper
The production and use of paper has a number of adverse effects on the environment.
Worldwide consumption of paper has risen by 400% in the past 40 years leading to increase in deforestation, with 35% of harvested trees being used for paper manufacture. Most paper companies also plant trees to help regrow forests. Logging of old growth forests accounts for less than 10% of wood pulp,but is one of the most controversial issues.
Paper waste accounts for up to 40% of total waste produced in the United States each year, which adds up to 71.6 million tons of paper waste per year in the United States alone.The average office worker in the US prints 31 pages every day.Americans also use on the order of 16 billion paper cups per year.
Conventional bleaching of wood pulp using elemental chlorine produces and releases into the environment large amounts of chlorinated organic compounds, including chlorinated dioxins.Dioxins are recognized as a persistent environmental pollutant, regulated internationally by the Stockholm Convention on Persistent Organic Pollutants. Dioxins are highly toxic, and health effects on humans include reproductive, developmental, immune and hormonal problems. They are known to be carcinogenic. Over 90% of human exposure is through food, primarily meat, dairy, fish and shellfish, as dioxins accumulate in the food chain in the fatty tissue of animals.
Future of paper
Some manufacturers have started using a new, significantly more environmentally friendly alternative to expanded plastic packaging. Made out of paper, and known commercially as paperfoam, the new packaging has very similar mechanical properties to some expanded plastic packaging, but is biodegradable and can also be recycled with ordinary paper.
With increasing environmental concerns about synthetic coatings (such as PFOA) and the higher prices of hydrocarbon based petrochemicals, there is a focus on zein (corn protein) as a coating for paper in high grease applications such as popcorn bags.
Also, synthetics such as Tyvek and Teslin have been introduced as printing media as a more durable material than paper.