High efficiency turbine equipment for sale
USD $20,000 - $200,000 /Set
Min.Order:1 Set
Hongya Power Generating Equipment To Utilities Limited
1000KW hydraulic generator for hydro power station
Reaction turbines
Reaction turbines are acted on by water, which changes pressure as it moves through the turbine and gives up its energy. They must be encased to contain the water pressure (or suction), or they must be fully submerged in the water flow.
Newton's third law describes the transfer of energy for reaction turbines.
Most water turbines in use are reaction turbines and are used in low (<30m/98 ft) and medium (30-300m/98–984 ft) head applications. In reaction turbine pressure drop occurs in both fixed and moving blades.
Impulse turbines
Impulse turbines change the velocity of a water jet. The jet pushes on the turbine's curved blades which changes the direction of the flow. The resulting change in momentum (impulse) causes a force on the turbine blades. Since the turbine is spinning, the force acts through a distance (work) and the diverted water flow is left with diminished energy.
Prior to hitting the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine doesn't require a housing for operation.
Newton's second law describes the transfer of energy for impulse turbines.
Impulse turbines are often used in very high (>300m/984 ft) head applications .
Design and application
Turbine selection is based mostly on the available water head, and less so on the available flow rate. In general, impulse turbines are used for high head sites, and reaction turbines are used for low head sites. Kaplan turbines with adjustable blade pitch are well-adapted to wide ranges of flow or head conditions, since their peak efficiency can be achieved over a wide range of flow conditions.
Small turbines (mostly under 10 MW) may have horizontal shafts, and even fairly large bulb-type turbines up to 100 MW or so may be horizontal. Very large Francis and Kaplan machines usually have vertical shafts because this makes best use of the available head, and makes installation of a generator more economical. Pelton wheels may be either vertical or horizontal shaft machines because the size of the machine is so much less than the available head. Some impulse turbines use multiple water jets per runner to increase specific speed and balance shaft thrust.
Typical range of heads
• Hydraulic wheel turbine | 0.2 < H < 4 (H = head in m) |
how to calcualte power
P=N*P*G*H*Q
where:
Contact person: CoCo Wen
Mobile: 86 15228976155
Skype: CoCo.Wen4
If you have any questions, pls. feel free to contact us! We promise you a professional service!